Начать продавать на Satu.kz
Корзина
23 отзыва

Сейчас у компании нерабочее время. Заказы и сообщения будут обработаны с 09:00 ближайшего рабочего дня (завтра, 04.11)

+7 (707) 327-97-14

Создан температурный сенсор на основе связанных состояний в континууме

Создан температурный сенсор на основе связанных состояний в континууме

Оптические температурные сенсоры используются в различных измерительных приборах и устройствах контроля в автомобильной и химической промышленностях, нефтегазовом секторе, других сферах. Они используются для контроля температуры при химических процессах, обнаружения протечек в трубопроводах, термического контроля силовых кабелей, для обеспечения пожарной безопасности и безопасной работы промышленных установок.

Учёные ФИЦ «Красноярский научный центр СО РАН» совместно с коллегами из СФУ использовали концепцию связанных состояний в континууме для создания оптического датчика температуры из фотонно-кристаллического микрорезонатора. Такой микрорезонатор состоит из жидкокристаллического слоя, расположенного между двумя одномерными фотонными кристаллами из чередующихся слоев нитрида кремния и диоксида кремния.

«Мы предложили новую модель оптического температурного сенсора на основе микрорезонатора и реализовали её экспериментально. В нашем микрорезонаторе фотонные кристаллы выступают как зеркала, а слой жидкого кристалла – как резонаторный слой. Когда свет находится между зеркалами, в слое жидкого кристалла реализуются так называемые микрорезонаторные моды. Чтобы детектировать температуру, мы использовали спектральные особенности локализованных мод», – рассказал Алексей Краснов, лаборант Института физики им. Л. В. Киренского СО РАН.

При прохождении света через микрорезонатор в спектрах пропускания наблюдаются провалы. Такой провал называется резонансной линией, или резонансом, и имеет две основные характеристики: спектральное положение и ширину. Обычно для сенсорных приложений используют изменение положения резонанса при изменении температуры. Ученые впервые предложили использовать для измерения температуры вторую характеристику – ширину резонансной линии. Используя концепцию связанных состояний в континууме, им удалось реализовать управление шириной резонансных линий при нагревании образца.

«Связанное состояние в континууме – это свет, который «не покидает» микрорезонатор. Изменение температуры жидкого кристалла приводит к разрушению связанного состояния. В результате свет выходит через зеркала, что проявляется в изменении спектральной ширины соответствующего резонанса. Стоит отметить, что для оптического диапазона электромагнитных волн, температурное управление шириной спектральных линий на основе связанных состояний в континууме было реализовано впервые», – объяснил результат работы кандидат физико-математических наук научный сотрудник Института физики им. Л. В. Киренского СО РАН Павел Панкин.

Устройство может быть использовано для измерения и калибровки температуры.